Control Systems Engineering Inc.

<ChuckR@ConSysEng.com>

Load & Motion Analysis For Mechanical & Electrical Engineer's

Chuck Raskin P.E. MSCS CMCS Director of Engineering

Load & Motion Analysis

To Determine the requirements of the System Control Components

System Control Components

Motor Amplifier (Drive) Gear Box Couplings Slides & Linkages Electronic Hardware Operational Software

Motion Control

* IS *

The Art of Controlling moving and Stationary Objects

Within the world of all things that move, there is a world of things that do not move.

Motion Control is knowing how to integrate these worlds to produce continuity within the motion process.

The Motion Puzzle

How we Think is How we Design

Our habits follow us throughout our lives.

We must look carefully at the entire problem to correctly determine the required solution

Motion Control Benefits

Shorter Positioning Times Higher Accuracy Improved Repeatability Better Reliability Coordinated Motion

Servo

Clamping

Control Systems Engineering Inc.

Ph: 763 757-3773 Fx: 763 757-9705

ChuckR@ConSysEng.com

System

An Ordered Set of Relationships

When Developing the Operation & Fault Sequences

Keep In Mind

Where you <u>were</u> and what just happened Where you <u>are</u> and what is currently happening Where you're going and what's about to happen

How Many Ways Can Something be Moved

Motors & Mechanics Hydraulics (Liquids) Pneumatics (Gasses) Cables & Pulleys Magnetic's

How Many Ways Should Something be Moved

How Stable is the Product

Is it Secure

Is it sensitive to or affected by Light Is it sensitive to or affected by Magnetic Fields What does it Look Like What is it Made From How Heavy is It What is the Environment Like

Is It Being Worked on While in Motion How Fast Does it Need To Be

Types of Mover's

- Motors & Mechanics
- □ Hydraulics (Liquids)
- Pneumatics (Gasses)
- **Cables & Pulleys**
- □ Magnetic's

Motors & Mechanics

Reasons for Understanding Motors

- Budget Considerations
- **Gize Constraints**
- **Environment**
- **Reliability / Efficiency**
- □ Style of Motion

Types of Motors

- **DC** Permanent Magnet
- **DC PWM Servo**
- □ AC w/Variable Freq. Drive
- □ AC w/Servo Drive
- □ AC w/Vector Drive
- □ AC/DC Brushless
- □ Stepper

DC Permanent Magnet

- Low to Medium Speed < 2500 RPM
- □ Light to Heavy Loads
- □ High Armature Inertia's
- □ VelMode
- Low Accuracy Positioning w/Gears
- **Brute Force Operation**
- **U** Low to Medium Bandwidth
- 1.5 to 2:1Peak to RMS Power Ratio
- Poor Thermal Performance
- □ Low Power Density (High \$/Watt)

DC PWM Servo

- **Good to 3000 RPM**
- □ Low to Med Speed Short Moves
- □ Light To Med Index Moves
- □ Low to Med Armature Inertia's
- **Good Thermal Performance**
- □ 4:1 Peak to RMS Power Ratio
- Low Torque Ripple w/Skewed Armature
- Good Efficiency over Large Speed Range

AC Motor

- □ Med to High Speed < 3600 RPM
- **Low to Med Acceleration**
- □ Light to Heavy Loads
- □ Med to High Armature Inertia's
- □ Brute Force Control (On/Off)
- □ VelMode
- **Good Efficiency at FULL LOAD**
- **D** Poor Thermal Capability
- □ Med Power Density
- □ 1.5 to 2:1 Peak to RMS w/Blower

AC Servo

- \Box Low to High Speed < 3600 RPM
- **Low to Med Acceleration**
- □ Light to Heavy Loads
- □ Med Armature Inertia's
- □ Servo like Control
- □ VelMode
- □ Med Positioning Accuracy
- **Good Efficiency at all Speeds**
- □ Med Thermal Capability
- **High Power Density**
- □ 1.5 to 2:1 Peak to RMS w/Blower

AC Vector

- \Box Low to High Speed < 3600 RPM
- **Low to High Acceleration**
- □ Light to Heavy Loads
- □ Med Armature Inertia's
- **Gamma** Servo like Control
- **Good Positioning Accuracy**
- **Good Efficiency at FULL LOAD**
- **D** Poor Thermal Capability
- □ Med Power Density
- □ Able to Servo at Stop

AC/DC Brushless

- \Box Low to High Speed < 6000 RPM
- **Low to High Acceleration**
- □ Light to Heavy Loads
- **Low to Med Armature Inertia's**
- □ Servo Control Capability
- **Good Positioning Accuracy**
- **Good Efficiency at all Speeds**
- **Good Thermal Capability**
- □ High Power Density
- Hall / Resolver / Encoder Operation

Stepper Motor

- \Box Low Speed < 2000 RPM
- **Low Acceleration**
- □ Light to Heavy Loads
- Med Armature Inertia's
- □ Servo Control Capability
- □ Good Positioning Accuracy 3%-5%
- □ High Accuracy W/Microstepping
- □ Low Efficiency at all Speeds
- **D** Poor Thermal Capability
- □ High Power to Size Ratio
- □ No Encoder Required
- Current FdBk for Move Knowledge

Types of Motor Amplifiers

AC:

Variable Speed Freq & Voltage Vector Brushless

DC:

Fixed Voltage Regenerative SCR, Transistor Linear PWM Brushless

Why Use Gearing

- □ Amplify Peak Speed
- □ Amplify Peak Torque
- Alter FdBk Freq. or Resolution
- **Reduce Load Inertia**
- Reduce Mover Size, Weight, Cost
- Improve Low Speed Operation

Gearing Problems

- Backlash
- □ Added Friction
- Added Inertia
- **Gear Errors**
- **Torque Ripple (Tooth Profiling)**
- □ Stiffness
- **Motion Hysteresis**

Gear Types / Performance

IIIah I	Screw Jack Med Bklsh, Med Stiffness, Smooth Otp Torq., 85% Eff, < 3000 RPM,
High J	Worm Low Bklsh, High Stiffness, Smooth Otp Torq., 40% Eff, < 2000 RPM,
Med J	Planetary Low Bklsh, VHigh Stiffness, Smooth Otp Torq., 85% Eff, < 3000 RPM,
Low J	Orbital Vlow Bklsh, Med Stiffness, Smooth Otp Torq., 90% Eff, < 3000 RPM,
	Harmonic (Cycloidal) Vlow Bklsh, Low Stiffness, Otp Torq. Ripple, 75% Eff, < 3000 RPM,
High J	Spur / Helical Med Bklsh, High Stiffness, Smooth Otp Torq., 98% Eff, < 5000 RPM,
LOW J	Differential Med Bklsh, Med Stiffness, Smooth Otp Torq., 85% Eff, < 5000 RPM,
High J VLow J	Plastic Gears High Bklsh, Low Stiffness, Smooth Otp Torq., 50% Eff, < 5000 RPM,

Control Systems Engineering Inc.

Ph: 763 757-3773 Fx: 763 757-9705 ChuckR@ConSysEng.com

Slides and Guides

1 -> 4 in order of: Lowest to Highest

Slide Type	Friction Roller	Hydraulic	Aerostatic
Friction	4	3	2
		1	
Wear	4	3	2

Stiction

4

3

2

1

Surface Finish

1

2

\$ for Accuracy 4

Control Systems Engineering Inc. Ph: 763 757-3773 Fx: 763 757-9705 ChuckR@ConSysEng.com

3

1

Stiffness

Damping

Hydraulics

Noisy Expensive Liquid (mess) Hi Maintenance Safety Concerns Lots of Power > 2000 PSI

Pneumatics

Air Purity
 Dry Air Requirement
 Not much Power
 < 130 PSI
 Compressible Medium
 Air Leaks Hard To Find

Cables & Pulleys

- □ Many available Ratios
- Many Styles of Cables Chain, Cable, etc.
- □ Spongy
- **Stretch Problems**
- **Guides May Be Required**
- □ Can Be Mechanically Complex

□ Can Simplify System

Interconnection

Magnetic's

- Dangerous around Computer Disks
- High Bandwidth
- Small Size
- □ Low to High Force Range
- □ Reasonably Quiet

Voice Coil Motors

SMAC Actuators can control forces to as low as 50 millinewtons

SMAC • 5807 Van Allen Way • Carlsbad, California 92008 • Fax: (760) 929-7588 • Tel: (760) 929-7575 4

Control Systems Engineering Inc. Ph: 763 757-3773 Fx: 763 757-9705

ChuckR@ConSysEng.com

10 Motion Building Blocks

- **Define the Problem**
- **Define the Operating Specifications**
- **Develop the Machine Requirements**
- Draft an Electrical/Mechanical Timing Diag.
- **Determine the Real Time Needs**
- Determine the Stability and Precision
- **Determine the Mover**
- **Determine the Required Sensors**
- Determine the Req. Interface (GUI:MMI)
- Look at the System from the Operators point of View

Selecting the Mover

Requirement to go from Point A to Point B Time Speed Trap S. Vector Control Index etc.

Time, Speed, Trap, S, Vector Control, Index, etc.

Load Weight

Tons, Pounds, Liquid, etc.

Acceleration/Deceleration

'S', Trap, Special

Machine Stiffness

Loose, Tight, Resonant Freq.

Tools to be Used

Water Jet, Laser, Metal Cutter, etc.

Environment

Humidity, Dusty, Temp., Noise, Availability of Elect/Air/Hydraulics, etc.

Speed of Move

Low/High, Index, Top Speed, etc.

Top Speed of System

Ability of Machine to handle Speed and Acl Rates

Accuracy / Repeatability Requirement

Which is the Best?

Control Systems Engineering Inc.

Ph: 763 757-3773 Fx: 763 757-9705 ChuckR@ConSysEng.com

Resolution Requirement

Frequency Restrictions, CE, etc.

3 Basic Types of Motion

Basic Types of Moves

- **U** Velocity
 - > Virtual
 - > True
- Position
 - Point to Point
 - Multiple Axis Interpolation
 - Multiple Axis Coordination
 - Registration
 - > Pick & Place
 - > On-The-Fly
 - ➢ Gearing
 - Cam

Velocity Move

- **True VelMode**
- **Computer Controlled VelMode**
- Position Can Be Maintained
- Stopping Point Optional Can Stop After X Revs.
- % Regulation Depends on Control
 - Type of Mover, Need
- Can Control More than One Axis at a Time

Point to Point

- □ No Coordination Required
- □ Can Be PC, PLC, etc. Controlled
- □ Smart Drive Allowed
- Proportional Valve OK
- +/- Accuracy/Repeatability = \$
- □ Formula is the same for All Movers
- □ Motion is a Gain Issue
- Tuning is not Necessarily Critical
- **Profile Dependent on Job to Do**

Multiple Axis Interpolation

- □ Simultaneous Axis Motion
- □ All Start/Stop Together +/-
- □ No Special Algorithms Needed
- +/- Accuracy/Repeatability = \$
- **Given Service Allowers Formula is the same for All Movers**
- ☐ Motion is a Gain Issue
- Tuning is not Necessarily Critical
- **Profile Dependent on Job to Do**

Multiple Axis Coordination Circles

- Chordal Error Sets Ang. of Rotation
- □ Accel. Control Reduces Chordal Errors
- □ Ensure BW is Good for the Job

Multiple Axis Coordination Splines

- **Chordal Error Sets Ang. Of Rotation**
- □ Accel. Control Reduces Chordal Errors
- □ Splining Reduces Data Req. by Control

Registration

- □ Maintaining Relative Positions in Space
- □ Master Slave Coordination
- Types of Applications:
 Packaging, Labeling, Marking

Pick & Place

- **Part Assembly**
- Packaging
- **Speed** Voice Coil Motor?
- □ Stability
- □ Accuracy / Repeatability

Position On-The-Fly

- ☐ Match Speed
- **Return Home**
- **Registration**
- **General Length Cuts**
- **Given Service Service**
- □ Acceleration Profiling

- □ Master Slave
- Resolution is of Concern Master Slave 5:1
- □ Slave Accel > Master Accel
- □ Slave Speed > Master Speed

Master/Slave Relationship is Critical

Cam

- **BW** is Critical
- Brushless is Best
- Current Mode Amplifier
- \Box How can we do It?

The Motion Formula's

- **Torsional Deflection**
- □ Inertia of Squares & Rectangles
- Inertia of Solid and Hollow Cylinders
- **D** Parallel Axis Theorem
- **RMS** Calculations

Torsional Deflection (Twist)

$$Td = \frac{584 * T * L}{D^{4} * G}$$
 Degrees

Where:

T = Twisting Moment (Torque in InLbs) L = Shaft Length (In) D = Shaft Diameter (In) G = Torsional Modulus of Elasticity (11,500,000 Lbs/in^2 for Steel)

Torsional Example

How much HP will it take to twist a shaft 7.625 inches in diameter and 16 feet long .25 degrees?

> D = (16384 / 360) = 45.5 cnts / deg = 16 / 45.5 = 0.355 degrees L = 16 feet * 12 = 192 inches r = 7.625 / 2 = 3.8125 inches

Then:

T = (0.355 * 3.8125⁴ *11,500,000) / (192 * 584) T = 7692 InLbs = 641 FtLb

Generated Motor HP = RPM * T (FtLb) / 5252 = 1710 * 641 / 5252 = 208 HP

Inertia of Square Area and Rectangular Solids

- **Volume (v)** = 1 * w * h
- □ Weight (w) = v * Density
- □ Mass (m) = w / g where: g = 32.16 ft/sec^2
- **Inertia (Jzz) = m / 12 * (h^2 + w^2)**

Inertia of Solid Cylinders

- $\Box \quad \text{Area (a)} = \text{PI} * r^2$
- **U** Volume (v) = a * h
- □ Weight (w) = v * Density
- Mass (m) = w/g where: g = 32.16 ft/sec^2
 Inertia (Jzz) = ¹/₂ * m *r^2

$$= \frac{1}{2}$$
 (PI * r^2 * h * w / g) * r^2

□ Inertia (Jxx) = PI * $R^2 * h * w / g$) * $h^2 / 3 + r^2 / 4$)

Hollow Cylinder Inertia Calc's

- **Area** (a) = PI / $4 * (Do^2 Di^2)$
- **U** Volume (v) = a * h
- □ Weight (w) = v * Density (d)
- Mass (m) = w / g where: g = 32.16 ft/sec^2
- $\Box \quad Jzz = \frac{1}{2} m [(Do/2)^2 (Di/2^2)]$

Parallel Axis Theorem

 $J1 = J1 + (S1^2) * M1$

 $J2 = J2 + (S2^2) * M2$

Jtotal = J1 + J2 InLbSec²

RMS Torque Calc's

Where:

= Torque Values Т = Time Values t

Control Systems Engineering Inc. Fx: 763 757-9705 Ph: 763 757-3773 ChuckR@ConSysEng.com