
Understanding BLDC Motor & Motion Control

Chuck Raskin P.E. Principal R&D Engineer Montevideo Technology Inc. www.slmti.com

What is Motion Control ?

Controlling Moving and Non-Moving Objects in Space

3-Dimensional Space

- Distance From/To
 - Time (RMS) Acceleration Run Time Deceleration Wait Time
- Direction CW/ CCW / Both
- Obstacles
 Moving / Stationary

What is System Engineering ?

First . . . What is a System ?

WIKIPEDIA

A *system* is a set of interacting or interdependent component parts to form an intricate whole. Every *system* is delineated by its :

> spatial (placement) and temporal (time) boundaries, surrounded and influenced by its environment, described by its structure and purpose expressed by its 'form, fit and function'

Second . . . What is an Engineer ?

INTERNET

Dreamer, Innovator, Researcher, Problem Solver, Inventor, Creator

Information to Know When Designing for Applications

Application Type Motor Type **Torque Requirement** Gearing Drive Style Sensored/Sensorless Halls, Encoder, Optics, other Nominal Voltage **Operating Voltage Range** Short Term Voltage Spikes Current / Power **Temperature Range Speed Requirement** Accel/Decel/RMS Profile Regulation **Fault Signal Requirements Command Styles** Analog/PWM/Programmable/other **Direction Control** MTBF **FMEA** FTA Weight L x W x H or L x Dia Cost Time to Market

Fault Signal Requirements Operating Environment Customer Spec Submitted DO-160 Test Requirements DO-178 Requirements DO-254 Requirements MIL-STD Testing Requirements Other Certifications

Description	Discrete	ASIC/PLD/uP	BLDC Controller	
Component Count	Very High	High	Low	
MTBF (hrs)	80k-100k	100k-200k	> 200k	
Adjustability	Design Change	Programming	External Component	
Footprint	Large	Moderate	Small	
Temperature Range	-55C to 125C	-40C to 125C	-55C to 125C	
Current Control	By Design	By Design	YES	
Fault Detection	By Design	Programmable	Built-In	
Sensor/Sensorless	YES/NO	YES/wExt_Ckts	YES/YES	
Speed Control	NO	YES	YES	
Cost	High	Medium	Low	
Time to Market	Long (~2yrs)	Medium (~1yr)	Short (<1yr)	

Typical reasons for Discrete Designs

• Simple component usage:

i.e. no Specialized devices

- Simple problem(s) being solved
- Simple solutions with lower cost components
- Simpler design components supporting years design life & Manufacturing support

Reasons for Complex designs

- Minimize component count
 Use of uP or ASIC devices
 Increased MTBF
 Simpler design reducing manufacturing errors
- Allows for additional features where/when required
- Typically single sourced devices (not good)
- May or may not include software
- Reduce Torque Ripple by use of current monitoring

Trapezoidal Commutation

- 1. Speed Control Generation & EMI
- 2. Unbalanced Amplifier Stages creating Torque Ripple
- 3. Phase to Phase Distortion creating Torque Ripple
- 4. Gain characteristics from one system to another
- 5. Current differences affect the amplifier outputs

Sinusoidal Commutation

- 1. Speed Control Generation & EMI
- 2. Gain characteristics from one system to another
- 3. Current differences which can affect the Amplifier Gain

Motor Control Comparison

	Discrete Drive		Integrated Drive	
	Pro	Con	Pro	Con
Pure Open Loop	Х	-	Х	-
Speed Control	Х	-	Х	-
Reduced EMI	Х	-	Х	Х
Component Count	-	Hi	LOW	-
Design Complex	-	Х	Х	-
Class A ?	-	Х	Х	-
Fixed current optimization	-	Х	Х	-
Software configurable current optimization	-	NA	Х	-

Technology differences

Discrete Design

- Use RC time constants
- Simple comparators
- Simple OR/AND logic
- High component count
- Use of smaller parts
- Other ???

Complex Design

- Application specific driver
- Low component count
- Microcontroller for timing and logical
- Easier to maintain
- Other ???